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Abstract. Using the Hilbert—-Schmidt theorem, we reformulate the non-relativiBtimatrix
theory in terms of a uniformly and absolutely convergent expansion.  Term-by-term
differentiation is possible with this expansion in the neighbourhood of the surface. Methods for
improving the convergence are discussed whenRHenction series is truncated for practical
applications.

1. Introduction

Since 1937, boundary condition methods (BCM) have played an important role for many
guantum mechanical problems [1-43]. In the BCM formulation, configuration space is
divided into two parts: internal and external regions. In the external region, the interaction
is usually known and in many cases the effective two-body equation is exactly solvable. A
boundary condition matrix is defined in terms of the independent external wavefunctions and
their derivates at a boundary. From this information (boundary condition matrix) and the
known solution in the external region, tlfematrix and the cross section can be calculated.
There are two boundary condition matrice®:matrix and P-matrix. The R-matrix is the
inverse of the logarithmic derivative of the external channel wavefunction at the surface. A
detailed account of th&-matrix theory of nuclear reactions is given in [5]. TRematrix

is the logarithmic derivation matrix. ThB-matrix formulation of nuclear reactions has not
been used extensively except for the nucleon—nucleon scattering problem [5-10]. We note
that in some papers this matrix is called tRematrix or Y-matrix.

The R-matrix theory is extensively employed for describing energy dependence of the
cross section for various binary nuclear processes including both elementary and composite
nuclear particles [5,13-19] and is often used to extrapolate experimental data for the cross
section which are dominated by the contributions from a few resonance or bound states.

In atomic physics, the exchange interaction, which is the most difficult part of the
problem to calculate accurately, is only in the internal region, and interactions in the external
region reduce to long-range local potentials [20]. TRenatrix code is a very powerful
computation code [21, 22] for calculating electron—atom collisions and photoabsorption
processes. For example, the inner-shell photoionization cross sections calculatedrby the
matrix code [23, 24] are in excellent agreement with the recent experimental measurements
[44].

The R-matrix method for studying low-energy electron—molecule collisions was
developed in [25-27]. It has been used to describe elastic scattering, electronic excitation,
vibrational excitation [29] and dissociative attachment [31]. For an extensive review of
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physical applications of the BCM in atomic physics see [40]; for a more mathematical
treatment see [41].

The R-matrix method is based upon expanding the total wavefunatidar any energy
in the internal region in terms of the complete set of eigenfunctitns

U= Z A X, (N
A

whereX; are defined by the equation
HX, = E; X, (2

and satisfy certairR-matrix boundary conditions on the surface [5]. It is known that there
is a formal problem with the wavefunction expansion used in the conventional approach for
the R-matrix theory. Either the expansion given by equation (1) is not uniformly convergent
in the neighbourhood of the surface, or term-by-term differentiation of the expansion is not
admissible [5, 20]. To avoid these difficulties variational formalisms [32—38] were proposed
with basis functions which do not satisfy tiRematrix boundary conditions.

The non-relativisticR-matrix theory is rigorous and therefore, there remains, from the
formal point of view, a problem of how to formulate the-matrix method in terms of a
uniformly and absolutely convergent expansion.

In this paper we present solutions of this formal problem and discuss various
approximations of th&-function. In section 2, we describe in some detail the conventional
formulation of R-function in terms of the expansion given by equations (1) and (2). In
section 3, we reformulate th®-matrix theory based on the Hilbert-Schmidt theorem to
obtain theR-function in terms of a series which is uniformly and absolutely convergent. In
section 4, we discuss methods of improving the convergence at-thmction series when
it is truncated for practical applications. In section 5 we present an illustrative numerical
example (low-energy—°C interaction) supporting our theoretical results. A summary and
conclusions are given in section 6.

2. R-function

In order to describe the formal procedure employed in Ramatrix theory, we consider
the simplest case of potential scattering for spinless particles with only the elastic scattering
channel being open.

The radial wavefunctiom,(r) in the interior region (X r < a satisfies the Scbdinger
equation

d?u 2uV(ry L+1)
~52 ( T )Me(r)=k2ue(r) ®

where 1 is the reduced massV (r) is the interaction potential in the internal region
0<r <a, andk?® = 2uE/h°.

In the conventional theory [5, 20, 39%,(r) in the internal region(0 < r < a) is
expanded in terms of complete set of statég) given within the region &< < a. These
states are the solutions of the equation

d?ut 2uV(r) LEU+1)
- dr2A ( A )uf{(r) = K ) (4)
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satisfying theR-matrix boundary conditions

ui(0)=0
a dut 5
uf (@) (d_rk>,=a -° X
and the orthonormality conditions
/ ’ ul (ryus, (r) dr = 8. (6)
In the region 0< » < a, u,(r) may be expanded in terms of the eigenfunctioﬁler)
we(r) = icﬁui(r) O0<r<a) @)
=1
where
&= [ wumnio, ®)

As we show below, either: (i) expansion (7) does not converge uniformly, or (ii) term-
by-term differentiation is not admissible [5, 20], or both (i) and (ii) may be applicable. From
Green'’s theorem [5, 20] and the boundary conditions (5), we find

1 ub(a) duy
(4 AN
G = k2 2 [aa — Bug] - 9)
Substitution of equation (7) into equation (6) gives
. du us (rus (a
i (r, k%) = ue(r) [ad—rlZ - BM(] =- Z ’\( ) A( ). (20)
If we now define
0 2
rR® =1 > ”A(“)) (11)
af= Kk~

and assume that

. = ue(r)u[(a)} o (uf (a))?
lim A A 2 (12)
2L

r—a

we find thatR® relates the amplitude of, to its derivative at the boundary by the relation
(B) dug -1
RY™ =uy(a) |a— — Buy . (13)
dr r=a
OnceR® has been calculated, thé-matrix and cross section can be easily determined.
From the fact that

, N uf (ryus (r')
Gg(l’,r):—;)”kf%kz (l4a)
and
o ueYe) r<r
Gulrr) = { w (Y () < (1)
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with
ve(a)Buy(r)

[ %~ Bu]

r=a

Yo(r) = + ye(r) (15)

wherey, (r) is the irregular solution of equation (3) with boundary conditi()%{g),:a =0,
andu,y, — y,ue = 1, it can be seen that equations (7) and (10) can be obtained from the
spectral decomposition, equation 4of Green’s functionG,(r, r’). This bilinear series,
equation (14), converges in.,(0 < r < a).

We note that the completeness of the stat¢sdoes not guarantee validity of
equation (12). To demonstrate this statement, let us first consider a special case of boundary
conditionsB = oo, or

us (0) = ut(a) = 0. (16)

Using equation (5), equation (9) can be written as

l A
¢ us(a) dup(r)  wi(a) duj(r)
= . 17
“ [kf—kz o k-2 d ., (17e)
For theu! (a) = 0 case, equation (&J is
¢ ug(a) d_ui
o= k2 - k)% ( dr r=a (17b)
and substitution of equation (17) into equation (7) gives
ue(r) X ul(r) (duﬁ)
= B . 18
ue(a) ;kz—kf dr /,_, (18)

If one tries to obtain this value of lim,, 22 = 1 from the right-hand side of equation (18)

ug(a)

taking the limit term by term, one obtains a null result, because of equation (16).
In the case of the boundary conditions (5) we can obtain from equation (10), that

1/ d &\ ul (ryul(a)
n(r) = - <aa —B);—ki—kz (29)
where
n(r) = [a ot (r) — Bug(r)] / [a% — Bug:| . (20)
dr dr r—a

Once again we obtain a null result fgta) = 1 by differentiating term by term and taking

the limit term by term of the sum in equation (19) and using equation (5). The explanation
for these paradoxes is that either (i) the expansion (7) or (i) its derivative series, obtained
by differentiating the individual terms of the expansion (7), is not uniformly convergent in
the neighbourhood of the surface. Or they may be due to both (i) and (ii). This difficulty
associated with expansion (7) has been known for many years [5,20]. We note that the
possibility of the interchange of the operations, litp- and)_, in equation (12) has been
studied [42].
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3. The Hilbert—-Schmidt theorem formulation of the R-matrix theory

Let us rewrite equation (3) in an integral form

ue(r) = ¢e(r) + (k? — «?) / Ke(r, r'yue(r') dr’ (21)
0
with
Ky ') = — { Xl < 2
Ye(r) X, (r)) r<r

where X,(r) and Y,(r) are regular and irregular solutions, respectively, of the following
equation

d?yr 2uV(ry £L+1) 2
“ Gz [ 2 P }W—KW (23)
and satisfy the following conditions
X,(0)=0
(@), @)
Ye(a) \ dr | _
and
dy,(r) Xg(r) _ dX,(r) Yg(l") -1
dr d

B is the same as one the introduced in equation £8)is an energy independent constant
satisfying a condition

K% £ k2 r=12..) (25)
and ¢, (r) is related toX,(r) by

$e(r) = aXo(r) (262)
wherea is an energy-dependent constant given by

o= [a% - Buz(r)l_a / [a P B)NQ(V):| . (260)

The integral equation (21), which is not the Lippmann—Schwinger-type equation, was first
introduced in [11] for thec? = 0, B = oo case. Equation (21) has a unique solution, since

/ / Kzz(r,r/)drdr’<oo
0 0

i.e. K,(r,r") is completely continuous and self-adjoint kernel [45]. keth = 1,2, ...) be
eigenvalues of the Hermitian continuous ker&glr, r’)

uf(r) =y / K, (r, r/)ui(r’) dr’ (27a)
0

with
Vi = kZ — 2. (270)
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As it is well known, the eigenvalueg, are real, and the functions,(r) and uﬁ(r) are
continuous. Due to the Hilbert—Schmidt theorem [45], the following expansion

a oo
/ Ko(r, Nu,(r) dr’' = Z cut () (28)
0 r=1
converges uniformly and absolutely overOr < a, and, ifk? # k2, the unique solution

ug(r) of the integral equation (21) appears in the following form of a series which is
uniformly and absolutely convergent overDr < a (by Schmidt’'s formula):

du, -1 X, (r) k2 — k2 & ul (ryu'(a)
I/li(r) [ad_r — BM{] = I: ot — —+ P Z (kZ _)\Kz)(liz — kz) .
r=a a_dir — BXz(r)] B =1 VA A

(29)

If we now define

*k? — k%) & (Ui (a))?
(B) 12y _ p(B)( .2 )
ROWH = ROWH + 23 o (30)

where
X(a)
a5 — BX.()

R® (k%) = (31)

r=a

we find thatR® (k?) relates the amplitudes, to its derivative on the boundary by the
relation (13). Because the series (29) converges uniformly and absolutely, the following
equation

o0 Y4 l o0 4 2
im ul (r)ul (@) } _ (u! (@) 2
r>a- [; (k2 — k2 (k? — k?) ; (kZ — k?) (k2 — k?) (32)

is valid [46], and hence the expansion (29) is free of difficulties encountered in the
expansions given by equations (7) and (10). Series (29) can be also obtained from the
standard Wigner's expansion (9) by separating the energy independeniitetm?) in

i (r, k%), equation (10), withc? satisfying condition (25). Our derivation has shown that the
dispersion expansion (30) converges absolutely, and exhibits the general energy dependence
of the R-function. The expansion given by equation (29) is a main result of this paper. The
proof of the absolute convergence of the series (30) in g€dse 0 was given by Schiffer

and Bargmann. Their proof is reproduced in [47].

4. Improving the convergence

In general, theR-function has an infinite number of pole terms. According to Courant’s
minimax considerations, i’ (r) is bounded, nd? differs from the corresponding value of
k2, (kio))z, for noninteracting casé€V (r) = 0) by more than the bound [5]. Consequently,
the general term of the series (11) for fixetbehaves as/2? since(k\”)2 o 12, while the
general term of the series (30) behaves A5*lasi — oco. For the case of the dispersion
formula (11), truncation of th&-function by a finite numberX) of terms gives

N 14 2
R® =2y m@)r (33)

a‘= (kZ-k?
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While for the case of the dispersion formula (30), we have

1 N 4 2
RO () = RYM 4 = § : —((:;(";{)2) (34)
where
2
RS = R® () — § ((k'?(“))) (35)

The general method of improving the convergence is to separate and sum the slowly
converging parts of the series [48]. An alternative approach leading to a smooothly
convergentR-matrix was proposed in [43]. It is obvious that there are many possibilities
to obtain a rapid convergence. For example, the expansion (30) can be represented in the
form

k2 — k2
RP (k) = RP® (k?) + ——— (RP (k3) — RP (k?))

(k§ — k?)
(k? — k?)(k? — k§) & (u} (a))?
+ a ;( 2 k) (k? — k) (k? — k3) (36)

wherekZ is an energy-independent constakg # «2, k3 # k2, A = 1,2,...). Expansion
(36) converges much faster than (30) (the general term behaves.9s dand truncation of
equation (36) by a finite number of terms gives

2

Ry (k%) = R +k2R<N>+ Z(:z(a)) (37)
where
~(N) 2 A 2
» _p® 2 K (B) 1.2\ _ p(B) .2 (uy(a))
R, =RPk? —kg—Kz(R *2) — R® () + & Z(kZ—KZ)(kZ 3

(38)

and

w_ 1 (B) (1,2 (B), 2 1¢ (u}(a))?

R =g e Rk - RO - Z(kz DD (39)

However, for the case of equation (37), we have introduced an additional paraRé’&er
and we do not expect a weak dependence of equation (37) on this.

To obtain a faster convergence, we introduce a trial poteftia) and remove the
correspondingr-function R® (k2) obtained withV (r):

5 5 K — i & (i} (a))
R® (k?) = R® (2 _ 2 . 40
(k%) (k?) + — ; Y (40)

For the case of the dispersion formula (11), this method has been used in many papers
[13,17,20]. For the case of equation (30), we have

RO = RP (%) + RP*?) — RP(c?)
i (@) (@ (@)

2—kDkE—k?) (k2 — k) (k2 -
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It can be shown (see the appendix) that the general term of equation (41) behaye$§ as 1
for any boundV (r), and hence we expect a wedk(r) dependence for the following
approximation

1 N ¢ 2
RO = RY + gy () + = 3 1@ (42)
a — ki —k
where
. . 1 L (it (a))?
2y _ pB)2y _ pN) _ — A
gn (k%) = RV (k%) — Ry a;];%_kz (43)
N ~¢ 2
R(()N) _ R(B)(KZ) _ }Z (M;\(a)) (44)

72 2
a5 ki—«

and i (r) are solutions of equation (4) with the trial potentialr). Note that the case

of V(r) = 0 was considered in [11, 49]. For practical calculations of Eamatrix with

the approximation (42) for an incident nucleon, it is possible to use a simple squared-well
potential

V(r)=—Vob(a —r) (45)
where Vp = Ezzﬁg. The wavenumber, is independent of the mass numhérand is
approximately the same for all nucleky ~ 1 fm) [50].

5. Numerical test of the convergence

As an illustration of our method, we consider the case of a square-well potential for low-
energyn—*2C interactions,

V()= —Vob(a—r) (46)

for which the R-function and its parameters are determined in explicit form [5]. We restrict
our discussion to th&-wave interaction{ = 0). The low-energy parameters (the scattering
length A, the effective radiusy,, and the binding energy of £ = 0,s = % state of3C)

in the case of potential given by equation (1) are determined fronRthenction R(E) by

the following formulae

A =a(1— R(0)) (47)

ro=2a(l—a/A+a®/(3A% —h?R'(0)/(2uA?) (48)

1+ x.aR(e) =0 (49)
whereu is the reduced mass,

R(0) = tan(xa)/xa R(€) = tan(xca)/(x.a) (50)

o [
R(O)_zvo [co§(xa) R (1)

1
(0)}
X =/ 2uVo/R? Xe =/ 21L(Vo + €) /R2. (52)

The parameter¥, anda are taken as
Vo = 34.997 MeV a =4.071 fm (53)

and
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These parameters correspond to the following values of the scattering ldangtre
effective radius and the binding energy of the¢ =0, s = % state of!3C:

A =6.140 fm ro =3.377 fm € = —1.860 MeV (54)
which are in good agreement with low-energy parameters obtained in [51]
A = 6.140 fm ro = 3.367 fm € = —1.860 MeV. (55)

It is also necessary to mention the good agreement of the calculated values of the elastic
cross section with experimental values [52] up to energies of the order of 2 MeV in the
laboratory system.

We note that [51] uses a model with

Vo =413 MeV a=372fm (56)
which corresponds to
A =5.862 fm ro = 3.128 fm € = 1.880 MeV (57)

and leads to a low-energy cross section, which is about 8% smaller than experimental values.
For the potential (46) we have investigated the convergence of the two-particle low-
energy parametersd(and rg) to their exact values as a function of the number of pole
terms in the expansion for th&-function using three differenR-function expansions:
(a) without background terms, dispersion formula (33), (b) with a constant background
term, dispersion formula (34) and (c) with removal of tRefunction generated from the
trial potential V(r) = 0 (corresponding to the case of free motion) dispersion formula
(42). Approximations (a) and (b) are the conventional methods used previously, while the
proposed method with approximation (c) is new to the best of our knowledge.
In the calculation we used the following value of the boundary condition pararBeter
(equation (5))

2plel

B =— Eza

(58)

With approximations (a)—(c) for th&-function, we have calculated the scattering lendth

and the effective radiugy. Our numerical calculations show that approximation (b) yields

a much faster convergence than that with approximation (a). We note that parametrization
with a constant background term (approximation (b)) was used for fitting ofBe- n
scattering and reaction cross section in [53].

We also find that the removal of a term corresponding to the free motion irRthe
function substantially improves the convergences (approximation (c)). Here the inclusion
of only one pole term in the expansion yields the exact reproduction of the effective radius
(relative error is about 0.01%), whereas 25 and 10 terms are required to obtain the effective
radius within accuracies 0f0.3% for approximations (a) and (b), respectively. It is
important to note that this removal procedure does not introduce any additional parameters
in comparison with approximation (b).

6. Summary and conclusions

Using the Hilbert—Schmidt theorem and the integral equation, equation (21), we have
reformulated theR-function theory in terms of the expansion given by equation (29) which

is uniformly and absolutely convergent for all values of<0r < a. This expansion,
equation (29), can be differentiated term by term in the neighbourhood of the surface. Our
reformulation solves the existing formal problem of how to formulate Rheatrix theory
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without the use of expansions which are not uniformly convergent. A possible method for
improving the convergence of the-function series is given when the series is truncated
for practical applications.
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Appendix

In this appendix, we show that the general term of equation (41) behavesias We
rewrite equation (4) in a form of the \olterra integral equation

r

ul(r) = 94, (1) + /0 R (r. ¥l ) o (A1)
where

K(r. 1) = [x5, ("N, (r') — ¢, () x5, (] () (A2)
with

o(r) = %"vv) — [k = ).

#5, in equation (Al) is a regular solution of the Sotinger equation for the
noninteracting case

e, e +1
- d‘f?* + %«b&m = ()25, (r) (A3)

satisfying theR-matrix boundary conditions (5) and the orthonormality conditions ).
in equation (A2) is the irregular solution of equation (A3)

216,00 = 05,0) [ T0h o]
andk? is defined from the condition

/Oa Xék(r)a)(r)uf(r) dr = 0. (A4)

For any bound and continuous(r), K (r, ') is also continuous and bound, and hence
the Neumann series (iteration series)

o]

uf(r) =Y (KP¢)(r) (A5)
p=0
converges uniformly and absolutely overOr < a [39], where K’ is a product of the
operatorsK and the functionk (r, r’) is the kernel of the linear integral operat&r.
From equation (A5), we can obtain

. 1
i ut@ = g6,@+0( ;) (a6)

and hence the general term of equation (41) behaveg)dsfdr any bound and continuous
V(r) and V (r).
We note an important fact that we do not need ‘smallnes¥ (@) for the convergence of
the Neumann series, equation (A5), in contrast to the conventional perturbation expansion.
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