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Abstract. Using the Hilbert–Schmidt theorem, we reformulate the non-relativisticR-matrix
theory in terms of a uniformly and absolutely convergent expansion. Term-by-term
differentiation is possible with this expansion in the neighbourhood of the surface. Methods for
improving the convergence are discussed when theR-function series is truncated for practical
applications.

1. Introduction

Since 1937, boundary condition methods (BCM) have played an important role for many
quantum mechanical problems [1–43]. In the BCM formulation, configuration space is
divided into two parts: internal and external regions. In the external region, the interaction
is usually known and in many cases the effective two-body equation is exactly solvable. A
boundary condition matrix is defined in terms of the independent external wavefunctions and
their derivates at a boundary. From this information (boundary condition matrix) and the
known solution in the external region, theS-matrix and the cross section can be calculated.
There are two boundary condition matrices:R-matrix andP -matrix. TheR-matrix is the
inverse of the logarithmic derivative of the external channel wavefunction at the surface. A
detailed account of theR-matrix theory of nuclear reactions is given in [5]. TheP -matrix
is the logarithmic derivation matrix. TheP -matrix formulation of nuclear reactions has not
been used extensively except for the nucleon–nucleon scattering problem [5–10]. We note
that in some papers this matrix is called theB-matrix orY -matrix.

TheR-matrix theory is extensively employed for describing energy dependence of the
cross section for various binary nuclear processes including both elementary and composite
nuclear particles [5, 13–19] and is often used to extrapolate experimental data for the cross
section which are dominated by the contributions from a few resonance or bound states.

In atomic physics, the exchange interaction, which is the most difficult part of the
problem to calculate accurately, is only in the internal region, and interactions in the external
region reduce to long-range local potentials [20]. TheR-matrix code is a very powerful
computation code [21, 22] for calculating electron–atom collisions and photoabsorption
processes. For example, the inner-shell photoionization cross sections calculated by theR-
matrix code [23, 24] are in excellent agreement with the recent experimental measurements
[44].

The R-matrix method for studying low-energy electron–molecule collisions was
developed in [25–27]. It has been used to describe elastic scattering, electronic excitation,
vibrational excitation [29] and dissociative attachment [31]. For an extensive review of
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physical applications of the BCM in atomic physics see [40]; for a more mathematical
treatment see [41].

TheR-matrix method is based upon expanding the total wavefunction9 for any energy
in the internal region in terms of the complete set of eigenfunctionsXλ,

9 =
∑
λ

AλXλ (1)

whereXλ are defined by the equation

HXλ = EλXλ (2)

and satisfy certainR-matrix boundary conditions on the surface [5]. It is known that there
is a formal problem with the wavefunction expansion used in the conventional approach for
theR-matrix theory. Either the expansion given by equation (1) is not uniformly convergent
in the neighbourhood of the surface, or term-by-term differentiation of the expansion is not
admissible [5, 20]. To avoid these difficulties variational formalisms [32–38] were proposed
with basis functions which do not satisfy theR-matrix boundary conditions.

The non-relativisticR-matrix theory is rigorous and therefore, there remains, from the
formal point of view, a problem of how to formulate theR-matrix method in terms of a
uniformly and absolutely convergent expansion.

In this paper we present solutions of this formal problem and discuss various
approximations of theR-function. In section 2, we describe in some detail the conventional
formulation ofR-function in terms of the expansion given by equations (1) and (2). In
section 3, we reformulate theR-matrix theory based on the Hilbert–Schmidt theorem to
obtain theR-function in terms of a series which is uniformly and absolutely convergent. In
section 4, we discuss methods of improving the convergence of theR-function series when
it is truncated for practical applications. In section 5 we present an illustrative numerical
example (low-energyn–12C interaction) supporting our theoretical results. A summary and
conclusions are given in section 6.

2. R-function

In order to describe the formal procedure employed in theR-matrix theory, we consider
the simplest case of potential scattering for spinless particles with only the elastic scattering
channel being open.

The radial wavefunctionu`(r) in the interior region 06 r 6 a satisfies the Schrödinger
equation

−d2u`

dr2
+
(

2µV (r)

h̄2 + `(`+ 1)

r2

)
u`(r) = k2u`(r) (3)

where µ is the reduced mass,V (r) is the interaction potential in the internal region
06 r 6 a, andk2 = 2µE/h̄2.

In the conventional theory [5, 20, 39],u`(r) in the internal region(0 6 r 6 a) is
expanded in terms of complete set of statesu`λ(r) given within the region 06 r 6 a. These
states are the solutions of the equation

−d2u`λ

dr2
+
(

2µV (r)

h̄2 + `(`+ 1)

r2

)
u`λ(r) = k2

λu
`
λ(r) (4)
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satisfying theR-matrix boundary conditions

u`λ(0) = 0

a

u`λ(a)

(
du`λ
dr

)
r=a
= B (5)

and the orthonormality conditions∫ a

o

u`λ(r)u
`
λ′(r) dr = δλλ′ . (6)

In the region 06 r 6 a, u`(r) may be expanded in terms of the eigenfunctionsu`λ(r)

u`(r) =
∞∑
λ=1

c`λu
`
λ(r) (06 r 6 a) (7)

where

c`λ =
∫ a

o

dr u`(r)u
`
λ(r). (8)

As we show below, either: (i) expansion (7) does not converge uniformly, or (ii) term-
by-term differentiation is not admissible [5, 20], or both (i) and (ii) may be applicable. From
Green’s theorem [5, 20] and the boundary conditions (5), we find

c`λ =
1

a

u`λ(a)

k2
λ − k2

[
a

du`
dr
− Bu`

]
r=a

. (9)

Substitution of equation (7) into equation (6) gives

ũl(r, k
2) = u`(r)

[
a

du`
dr
− Bu`

]−1

r=a
= 1

a

∞∑
λ=1

u`λ(r)u
`
λ(a)

k2
λ − k2

. (10)

If we now define

R(B) = 1

a

∞∑
λ=1

(u`λ(a))
2

k2
λ − k2

(11)

and assume that

lim
r→a−

[ ∞∑
λ=1

u`λ(r)u
`
λ(a)

k2
λ − k2

]
=
∞∑
λ=1

(u`λ(a))
2

k2
λ − k2

(12)

we find thatR(B) relates the amplitude ofu` to its derivative at the boundary by the relation

R(B) = u`(a)
[
a

du`
dr
− Bu`

]−1

r=a
. (13)

OnceR(B) has been calculated, theK-matrix and cross section can be easily determined.
From the fact that

G`(r, r
′) = −

∞∑
λ=1

u`λ(r)u
`
λ(r
′)

k2
λ − k2

(14a)

and

G`(r, r
′) =

{
u`(r)Y`(r

′) r 6 r ′

u`(r
′)Y`(r) r ′ 6 r

(14b)
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with

Y`(r) = y`(a)Bu`(r)[
a du`

dr − Bu`
]
r=a
+ y`(r) (15)

wherey`(r) is the irregular solution of equation (3) with boundary conditions(
dy`
dr )r=a = 0,

andu′`y` − y ′`u` = 1, it can be seen that equations (7) and (10) can be obtained from the
spectral decomposition, equation (14a), of Green’s functionG`(r, r

′). This bilinear series,
equation (14a), converges inL2(0< r < a).

We note that the completeness of the statesu`λ does not guarantee validity of
equation (12). To demonstrate this statement, let us first consider a special case of boundary
conditionsB = ∞, or

u`λ(0) = u`λ(a) = 0. (16)

Using equation (5), equation (9) can be written as

c`λ =
[
u`λ(a)

k2
λ − k2

dul(r)

dr
+ ul(a)

k2− k2
λ

duλl (r)

dr

]
r=a

. (17a)

For theu`λ(a) = 0 case, equation (17a) is

c`λ =
u`(a)

k2− k2
λ

(
du`λ
dr

)
r=a

(17b)

and substitution of equation (17) into equation (7) gives

u`(r)

u`(a)
=
∞∑
λ=1

u`λ(r)

k2− k2
λ

(
du`λ
dr

)
r=a

. (18)

If one tries to obtain this value of limr→a u`(r)

u`(a)
= 1 from the right-hand side of equation (18)

taking the limit term by term, one obtains a null result, because of equation (16).
In the case of the boundary conditions (5) we can obtain from equation (10), that

η(r) = 1

a

(
a

d

dr
− B

) ∞∑
λ=1

u`λ(r)u
`
λ(a)

k2
λ − k2

(19)

where

η(r) =
[
a

du`(r)

dr
− Bu`(r)

]/[
a

du`
dr
− Bu`

]
r=a

. (20)

Once again we obtain a null result forη(a) = 1 by differentiating term by term and taking
the limit term by term of the sum in equation (19) and using equation (5). The explanation
for these paradoxes is that either (i) the expansion (7) or (ii) its derivative series, obtained
by differentiating the individual terms of the expansion (7), is not uniformly convergent in
the neighbourhood of the surface. Or they may be due to both (i) and (ii). This difficulty
associated with expansion (7) has been known for many years [5, 20]. We note that the
possibility of the interchange of the operations limr→a− and

∑
λ in equation (12) has been

studied [42].
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3. The Hilbert–Schmidt theorem formulation of the R-matrix theory

Let us rewrite equation (3) in an integral form

u`(r) = φ`(r)+ (k2− κ2)

∫ a

0
K`(r, r

′)u`(r ′) dr ′ (21)

with

K`(r, r
′) = −

{
X̃`(r)Ỹ`(r

′) r 6 r ′

Ỹ`(r)X̃`(r
′) r ′ 6 r

(22)

where X̃`(r) and Ỹ`(r) are regular and irregular solutions, respectively, of the following
equation

−d2ψ

dr2
+
[

2µV (r)

h̄2 + `(`+ 1)

r2

]
ψ = κ2ψ (23)

and satisfy the following conditions

X̃`(0) = 0

a

Ỹ`(a)

(
dỸ`
dr

)
r=a
= B (24)

and

dỸ`(r)

dr
X̃`(r)− dX̃`(r)

dr
Ỹ`(r) = −1.

B is the same as one the introduced in equation (5).κ2 is an energy independent constant
satisfying a condition

κ2 6= k2
λ (λ = 1, 2, . . .) (25)

andφ`(r) is related toX̃`(r) by

φ`(r) = αX̃`(r) (26a)

whereα is an energy-dependent constant given by

α =
[
a

du`
dr
− Bu`(r)

]
r=a

/[
a

dX̃`(r)

dr
− BX̃`(r)

]
r=a

. (26b)

The integral equation (21), which is not the Lippmann–Schwinger-type equation, was first
introduced in [11] for theκ2 = 0, B = ∞ case. Equation (21) has a unique solution, since∫ a

0

∫ a

0
K2
` (r, r

′) dr dr ′ <∞

i.e.K`(r, r ′) is completely continuous and self-adjoint kernel [45]. Letγλ(λ = 1, 2, . . .) be
eigenvalues of the Hermitian continuous kernelK`(r, r

′)

u`λ(r) = γλ
∫ a

0
K`(r, r

′)u`λ(r
′) dr ′ (27a)

with

γλ = k2
λ − κ2. (27b)
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As it is well known, the eigenvaluesγλ are real, and the functionsu`(r) and u`λ(r) are
continuous. Due to the Hilbert–Schmidt theorem [45], the following expansion∫ a

0
K`(r, r

′)u`(r ′) dr ′ =
∞∑
λ=1

c̃`λu
`
λ(r) (28)

converges uniformly and absolutely over 06 r 6 a, and, if k2 6= k2
λ, the unique solution

u`(r) of the integral equation (21) appears in the following form of a series which is
uniformly and absolutely convergent over 06 r 6 a (by Schmidt’s formula):

u`(r)

[
a

du`
dr
− Bu`

]−1

r=a
= X̃`(r)[

a dX̃`(r)
dr − BX̃`(r)

]
r=a

+ k
2− κ2

a

∞∑
λ=1

u`λ(r)u
`
λ(a)

(k2
λ − κ2)(k2

λ − k2)
.

(29)

If we now define

R(B)(k2) = R(B)(κ2)+ (k
2− κ2)

a

∞∑
λ=1

(u`λ(a))
2

(k2
λ − κ2)(k2

λ − k2)
(30)

where

R(B)(κ2) = X̃`(a)[
a dX̃`(r)

dr − BX̃`(r)
]
r=a

(31)

we find thatR(B)(k2) relates the amplitudesu` to its derivative on the boundary by the
relation (13). Because the series (29) converges uniformly and absolutely, the following
equation

lim
r→a−

[ ∞∑
λ=1

u`λ(r)u
`
λ(a)

(k2
λ − k2)(k2

λ − k2)

]
=
∞∑
λ=1

(u`λ(a))
2

(k2
λ − k2)(k2

λ − k2)
(32)

is valid [46], and hence the expansion (29) is free of difficulties encountered in the
expansions given by equations (7) and (10). Series (29) can be also obtained from the
standard Wigner’s expansion (9) by separating the energy independent termũl(r, κ

2) in
ũl(r, k

2), equation (10), withκ2 satisfying condition (25). Our derivation has shown that the
dispersion expansion (30) converges absolutely, and exhibits the general energy dependence
of theR-function. The expansion given by equation (29) is a main result of this paper. The
proof of the absolute convergence of the series (30) in caseκ2 = 0 was given by Schiffer
and Bargmann. Their proof is reproduced in [47].

4. Improving the convergence

In general, theR-function has an infinite number of pole terms. According to Courant’s
minimax considerations, ifV (r) is bounded, nok2

λ differs from the corresponding value of
k2
λ, (k(0)λ )

2, for noninteracting case(V (r) = 0) by more than the bound [5]. Consequently,
the general term of the series (11) for fixedk2 behaves as 1/λ2 since(k(0)λ )

2 ∝ λ2, while the
general term of the series (30) behaves as 1/λ4 asλ→∞. For the case of the dispersion
formula (11), truncation of theR-function by a finite number (N ) of terms gives

R
(B)
N =

1

a

N∑
λ=1

(u`λ(a))
2

(k2
λ − k2)

. (33)
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While for the case of the dispersion formula (30), we have

R
(B)
N (k2) = R(N)0 + 1

a

N∑
λ=1

(u`λ(a))
2

(k2
λ − k2)

(34)

where

R
(N)

0 = R(B)(κ2)− 1

a

N∑
λ=1

(u`λ(a))
2

(k2
λ − κ2)

. (35)

The general method of improving the convergence is to separate and sum the slowly
converging parts of the series [48]. An alternative approach leading to a smooothly
convergentR-matrix was proposed in [43]. It is obvious that there are many possibilities
to obtain a rapid convergence. For example, the expansion (30) can be represented in the
form

R(B)(k2) = R(B)(κ2)+ k2− κ2

(k2
0 − κ2)

(R(B)(k2
0)− R(B)(κ2))

+ (k
2− κ2)(k2− k2

0)

a

∞∑
λ=1

(u`λ(a))
2

(k2
λ − κ2)(k2

λ − k2)(k2
λ − k2

0)
(36)

wherek2
0 is an energy-independent constant(k2

0 6= κ2, k2
0 6= k2

λ, λ = 1, 2, . . .). Expansion
(36) converges much faster than (30) (the general term behaves as 1/λ6), and truncation of
equation (36) by a finite number of terms gives

R
(B)
N (k2) =

≈
R
(N)

0 + k2R
(N)

1 + 1

a

N∑
λ=1

(uλ`(a))
2

k2
λ − k2

(37)

where

≈
R
(N)

0 = R(B)(κ2)− κ2

k2
0 − κ2

(R(B)(k2
0)− R(B)(κ2))+ κ

2− k2
0 − k2

λ

a

N∑
λ=1

(uλ`(a))
2

(k2
λ − κ2)(k2

λ − k2
0)

(38)

and

R
(N)

1 = 1

k2
0 − κ2

(R(B)(k2
0)− R(B)(κ2))− 1

a

N∑
λ=1

(uλ`(a))
2

(k2
λ − κ2)(k2

λ − k2
0)
. (39)

However, for the case of equation (37), we have introduced an additional parameterR
(N)

1 ,
and we do not expect a weak dependence of equation (37) on this.

To obtain a faster convergence, we introduce a trial potentialṼ (r) and remove the
correspondingR-function R̃(B)(k2) obtained withṼ (r):

R̃(B)(k2) = R̃(B)(κ2)+ k
2− κ2

a

∞∑
λ=1

(ũ`λ(a))
2

(k̃2
λ − κ2)(k̃2

λ − k2)
. (40)

For the case of the dispersion formula (11), this method has been used in many papers
[13, 17, 20]. For the case of equation (30), we have

R(B)(k2) = R(B)(κ2)+ R̃(B)(k2)− R̃(B)(κ2)

+k
2− κ2

a

∞∑
λ=1

(
(u`λ(a))

2

(k2
λ − κ2)(k2

λ − k2)
− (ũ`λ(a))

2

(k̃2
λ − κ2)(k̃2

λ − k2)

)
. (41)
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It can be shown (see the appendix) that the general term of equation (41) behaves as 1/λ6

for any boundṼ (r), and hence we expect a weak̃V (r) dependence for the following
approximation

R
(B)
N (k2) = R(N)0 + gN(k2)+ 1

a

N∑
λ=1

(u`λ(a))
2

k2
λ − k2

(42)

where

gN(k
2) = R̃(B)(k2)− R̃(N)0 − 1

a

N∑
λ=1

(ũ`λ(a))
2

k̃2
λ − k2

(43)

R̃
(N)

0 = R̃(B)(κ2)− 1

a

N∑
λ=1

(ũ`λ(a))
2

k̃2
λ − κ2

(44)

and ũ`λ(r) are solutions of equation (4) with the trial potentialṼ (r). Note that the case
of Ṽ (r) = 0 was considered in [11, 49]. For practical calculations of theR-matrix with
the approximation (42) for an incident nucleon, it is possible to use a simple squared-well
potential

Ṽ (r) = −Ṽ0θ(a − r) (45)

where Ṽ0 = h̄2K2
0

2µ . The wavenumberK0 is independent of the mass numberA and is
approximately the same for all nuclei(K0 ≈ 1 fm) [50].

5. Numerical test of the convergence

As an illustration of our method, we consider the case of a square-well potential for low-
energyn–12C interactions,

V (r) = −V0θ(a − r) (46)

for which theR-function and its parameters are determined in explicit form [5]. We restrict
our discussion to theS-wave interaction (̀= 0). The low-energy parameters (the scattering
lengthA, the effective radiusr0, and the binding energyε of ` = 0, s = 1

2 state of13C)
in the case of potential given by equation (1) are determined from theR-functionR(E) by
the following formulae

A = a(1− R(0)) (47)

r0 = 2a(1− a/A+ a2/(3A2)− h̄2R′(0)/(2µA2)) (48)

1+ χεaR(ε) = 0 (49)

whereµ is the reduced mass,

R(0) = tan(χa)/χa R(ε) = tan(χεa)/(χεa) (50)

R′(0) = 1

2V0

[
1

cos2(χa)
− R(0)

]
(51)

and

χ =
√

2µV0/h̄
2 χε =

√
2µ(V0+ ε)/h̄2. (52)

The parametersV0 anda are taken as

V0 = 34.997 MeV a = 4.071 fm. (53)
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These parameters correspond to the following values of the scattering lengthA, the
effective radiusr0 and the binding energyε of the ` = 0, s = 1

2 state of13C:

A = 6.140 fm r0 = 3.377 fm ε = −1.860 MeV (54)

which are in good agreement with low-energy parameters obtained in [51]

A = 6.140 fm r0 = 3.367 fm ε = −1.860 MeV. (55)

It is also necessary to mention the good agreement of the calculated values of the elastic
cross section with experimental values [52] up to energies of the order of 2 MeV in the
laboratory system.

We note that [51] uses a model with

V0 = 41.3 MeV a = 3.72 fm (56)

which corresponds to

A = 5.862 fm r0 = 3.128 fm ε = 1.880 MeV (57)

and leads to a low-energy cross section, which is about 8% smaller than experimental values.
For the potential (46) we have investigated the convergence of the two-particle low-

energy parameters (A and r0) to their exact values as a function of the number of pole
terms in the expansion for theR-function using three differentR-function expansions:
(a) without background terms, dispersion formula (33), (b) with a constant background
term, dispersion formula (34) and (c) with removal of theR-function generated from the
trial potential Ṽ (r) = 0 (corresponding to the case of free motion) dispersion formula
(42). Approximations (a) and (b) are the conventional methods used previously, while the
proposed method with approximation (c) is new to the best of our knowledge.

In the calculation we used the following value of the boundary condition parameterB

(equation (5))

B = −
√

2µ|ε|
h̄2 a. (58)

With approximations (a)–(c) for theR-function, we have calculated the scattering lengthA

and the effective radiusr0. Our numerical calculations show that approximation (b) yields
a much faster convergence than that with approximation (a). We note that parametrization
with a constant background term (approximation (b)) was used for fitting of the12C+ n
scattering and reaction cross section in [53].

We also find that the removal of a term corresponding to the free motion in theR-
function substantially improves the convergences (approximation (c)). Here the inclusion
of only one pole term in the expansion yields the exact reproduction of the effective radius
(relative error is about 0.01%), whereas 25 and 10 terms are required to obtain the effective
radius within accuracies of∼0.3% for approximations (a) and (b), respectively. It is
important to note that this removal procedure does not introduce any additional parameters
in comparison with approximation (b).

6. Summary and conclusions

Using the Hilbert–Schmidt theorem and the integral equation, equation (21), we have
reformulated theR-function theory in terms of the expansion given by equation (29) which
is uniformly and absolutely convergent for all values of 06 r 6 a. This expansion,
equation (29), can be differentiated term by term in the neighbourhood of the surface. Our
reformulation solves the existing formal problem of how to formulate theR-matrix theory
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without the use of expansions which are not uniformly convergent. A possible method for
improving the convergence of theR-function series is given when the series is truncated
for practical applications.
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Appendix

In this appendix, we show that the general term of equation (41) behaves as 1/λ6. We
rewrite equation (4) in a form of the Volterra integral equation

u`λ(r) = φ`0λ(r)+
∫ r

0
K̃(r, r ′)u`λ(r

′) dr ′ (A1)

where

K̃(r, r ′) = [χ`0λ(r)φ
`
0λ(r

′)− φ`0λ(r)χ`0λ(r ′)]ω(r ′) (A2)

with

ω(r) = 2µ

h̄2 V (r)− [k2
λ − (k(0)λ )2].

φ`0λ in equation (A1) is a regular solution of the Schrödinger equation for the
noninteracting case

−d2φ`0λ

dr2
+ `(`+ 1)

r2
φ`0λ(r) = (k(0)λ )2φ`0λ(r) (A3)

satisfying theR-matrix boundary conditions (5) and the orthonormality conditions (6).χ`0λ
in equation (A2) is the irregular solution of equation (A3)

χ`0λ(r) = φ`0λ(r)
∫ r

0
[φ`0λ(x)]

−2dx

andk2
λ is defined from the condition∫ a

0
χ`0λ(r)ω(r)u

`
λ(r) dr = 0. (A4)

For any bound and continuousV (r), K̃(r, r ′) is also continuous and bound, and hence
the Neumann series (iteration series)

u`λ(r) =
∞∑
p=0

(K̃pφ`0λ)(r) (A5)

converges uniformly and absolutely over 06 r 6 a [39], whereK̃p is a product of the
operatorsK̃ and the functionK̃(r, r ′) is the kernel of the linear integral operatorK̃.

From equation (A5), we can obtain

lim
λ→∞

u`λ(a) = φ`0λ(a)+O

(
1

λ2

)
(A6)

and hence the general term of equation (41) behaves as 1/λ6 for any bound and continuous
V (r) and Ṽ (r).

We note an important fact that we do not need ‘smallness’ ofV (r) for the convergence of
the Neumann series, equation (A5), in contrast to the conventional perturbation expansion.
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